An Early Performance Comparison of CUDA and OpenACC

Author:

Li Xuechao,Shih Po-Chou

Abstract

This paper presents a performance comparison between CUDA and OpenACC. The performance analysis focuses on programming models and underlying compilers. In addition, we proposed a Performance Ratio of Data Sensitivity (PRoDS) metric to objectively compare traditional subjective performances: how sensitive OpenACC and CUDA implementations are to change in data size. The results show that in terms of kernel running time, the OpenACC performance is lower than the CUDA performance because PGI compiler needs to translate OpenACC kernels into object code while CUDA codes can be directly run. Besides, OpenACC programs are more sensitive to data changes than the equivalent CUDA programs with optimizations, but CUDA is more sensitive to data changes than OpenACC if there are no optimizations. Overall we found that OpenACC is a reliable programming model and a good alternative to CUDA for accelerator devices.

Publisher

EDP Sciences

Subject

General Medicine

Reference20 articles.

1. Li X., Li C.H. and Xie Y.. 2011. “A Retrieval System of Vehicles Based on Recognition of License Plates”. Proceedings of 2011 International Conference on Machine Learning and Cybernetics (ICMLC), IEEE, Guilin, pp.1453–1459.

2. Hoshino T., Maruyama N., Matsuoka S. and Takaki R. 2013. “CUDA vs OpenACC: Performance Case Studies with Kernel Benchmarks and a memory-bound CFD Application”. 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 136–143.

3. Herdman J.A.Gaudin W.P. Mclntosh-Smith S. and Boulton M. 2012. “Accelerating Hydrocodes with OpenACC, OpenCL and CUDA”. 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC). pp. 465–471.

4. Christgau S., Spazier J., Schnor B., Hammitzsch M., Babeyko A. and Waechter J. 2014. “A comparison of CUDA and OpenACC: Accelerating the Tsunami Simulation EasyWave”. 27th International Conference on Architecture of Computing Systems (ARCS). pp. 1–5.

5. Che S., Sheaffer Jeremy, W., Michael B., Lukasz G. S., Liang W., and Kevin S. 2010. “A characterization of the rodinia benchmark suite with comparison to contemporary cmp workloads”, in Proceedings of the IEEE International Symposium on Workload Characterization (IISWC’10), pp. 1–11

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3