Cluster Analysis for Automated Operational Modal Analysis: A Review

Author:

Hasan M. Danial A.,Ahmad Z. A. B.,Leong M. Salman,Hee L. M.,Haffizzi Md. Idris M.

Abstract

Recent developments in the field of modal-based damage detection and vibration-based monitoring have led to a renewed interest in automated procedures for the operational modal analysis (OMA). The development of automated operational modal analysis (OMA) procedures marked a fundamental step towards the elimination of any user intervention since traditional modal identification requires a lot of interaction by an expert user. A key for effective automation of OMA is depended on well- defined modal indicators for a clear indication about which modes are to be selected as the physical modes. In all modal analysis, the construction of stabilization diagrams is necessary in order to illustrate, and decide, if a mode is physical or not for predefined range of the model order. On the other hand, the use of stabilization diagram tools involves a large amount of user interaction, costly, time-consuming process and certainly unsuited for online applications. Therefore, the development of automatic procedures for the analysis of stabilization diagrams by resembling decision-making process of a human has been carried out in recent years. For the sake of clearness, the automation of the interpretation of stabilization diagrams can generally be divided into two steps in order to speed up the process: a) elimination of noise modes and b) clustering of physical modes in order to obtain the most representative values of the estimated parameters of each clustered mode. In recent years, several alternative procedures have been proposed for clustering techniques. Therefore, this review aims to provide relevant essential information on the recent developments of cluster analysis in automated OMA. A literature review of existing clustering algorithm has been carried out to find best practice criteria for automated modal parameter identification which involving the general concepts of these techniques as well as the pro and cons of applying these clustering techniques are also discussed and summarised.

Publisher

EDP Sciences

Subject

General Medicine

Reference24 articles.

1. Bricker R., Venture C., Introduction to operational modal analysis, (2015)

2. Peeters B., System Identification and Damage Detection in Civil Engineering, Thesis (Ph.D.), (2000)

3. Rainieri C., Fabbrocino G., Operational Modal Analysis of Civil Engineering Structures, (2014)

4. Cabboi A., Automatic Operational Modal Analysis: Challenges And Applications To Historic Structure and Infrastructure, Thesis (Ph.D.), (2012)

5. Hair JF., Anderson RE., Tatham RL., Black WC, Multivariate data analysis, (1998)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3