Author:
Falamarzi Amir,Moridpour Sara,Nazem Majidreza,Hesami Reyhaneh
Abstract
Gradual deviation in track gauge of tram systems resulted from tram traffic is unavoidable. Tram gauge deviation is considered as an important parameter in poor ride quality and the risk of train derailment. In order to decrease the potential problems associated with excessive gauge deviation, implementation of preventive maintenance activities is inevitable. Preventive maintenance operation is a key factor in development of sustainable rail transport infrastructure. Track degradation prediction modelling is the basic prerequisite for developing efficient preventive maintenance strategies of a tram system. In this study, the data sets of Melbourne tram network is used and straight rail tracks sections are examined. Two model types including plain Support Vector Machine (SVM) and SVM optimised by Genetic Algorithm (GA- SVM) have been applied to the case study data. Two assessment indexes including Mean Squared Error (MSE) and the coefficient of determination (R2) are employed to evaluate the performance of the proposed models. Based on the results, GA-SVM model produces more accurate outcomes than plain SVM model.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献