Blade fault diagnosis using empirical mode decomposition based feature extraction method

Author:

Tan C. Y.,Ngui W. K.,Leong M. S.,Lim M. H.

Abstract

Blade fault diagnosis had become more significant and impactful for rotating machinery operators in the industry. Many works had been carried out using different signal processing techniques and artificial intelligence approaches for blade fault diagnosis. Frequency and wavelet based features are usually used as the input to the artificial neural network for blade fault diagnosis. However, the application of others time-frequency based feature extraction technique and artificial intelligence approach for blade fault diagnosis is still lacking. In this study, a novel blade fault diagnosis method based on ensemble empirical mode decomposition and extreme learning machine was developed. Bandpass filtering was applied to the raw vibration signals and integrated with the high pass filter to obtain the velocity signal. Synchronous time averaging was then applied to the velocity signals. Three ensemble empirical mode decomposition based feature extraction methods were proposed: direct statistical parameters extraction, intrinsic mode functions averaging statistical parameters extraction and features averaging statistical parameters extraction. The effectiveness of different feature vector sets for blade fault diagnosis was examined. Feature vector set of intrinsic mode functions averaging statistical parameters extraction was found to be more effective for blade fault diagnosis. With the novel proposed method, blade fault diagnosis could be more accurate and precise.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3