A hybrid k-means-GMM machine learning technique for turbomachinery condition monitoring

Author:

Yusoff Mohd. Dasuki,Ooi Ching Sheng,Lim Meng Hee,Leong Mohd. Salman

Abstract

Industrial practise typically applies pre-set original equipment manufacturers (OEMs) limits to turbomachinery online condition monitoring. However, aforementioned technique which considers sensor readings within range as normal state often get overlooked in the developments of degradation process. Thus, turbomachinery application in dire need of a responsive monitoring analysis in order to avoid machine breakdown before leading to a more disastrous event. A feasible machine learning algorithm consists of k-means and Gaussian Mixture Model (GMM) is proposed to observe the existence of signal trend or anomaly over machine active period. The aim of the unsupervised k-means is to determine the number of clusters, k according to the total trend detected from the processed dataset. Next, the designated k is input into the supervised GMM algorithm to initialize the number of components. Experiment results showed that the k-means-GMM model set up not only capable of statistically define machine state conditions, but also yield a time-dependent clustering image in reflecting degradation severity, as a mean to achieve predictive maintenance.

Publisher

EDP Sciences

Subject

General Medicine

Reference21 articles.

1. Lopes T.A. Piedras, Troyman A.C.R., Neural networks on predictive maintenance of turbomachinery, IFAC Fault Detection, Supervision and Safety for Technical Processess, Kingston Upon Hull, UK (1997)

2. Jahnke P., Machine learning approaches for failure type detection and predictive maintenance, Thesis, Dept. of Computer Science, TU Darmstadt (2015)

3. Anomaly Detection Based on Sensor Data in Petroleum Industry Applications

4. Blinder A., Wojcikiewicz W., Müller C., Kawanabe M., A hybrid supervised-unsupervised vocabulary generation algorithm for visual concept recognition, ACCV: Computer Vision, 95–108 (2010)

5. Cluster aware Star Coordinates

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3