Study of natural degradation effect on lignocellulose fibers of archaeological cedar wood: monitoring by Fourier Transform Infrared (FTIR) spectroscopy

Author:

Fellak Somia,Rafik Mourad,Haidara Hasnaa,Boukir Abdellatif,Lhassani Abdelhadi

Abstract

The present work aims at elucidating the changes in the chemical composition of Moroccan cedar wood during exposure time to the natural degradation process. Correlation of these changes with certain physical properties and performance of this polymeric material were proposed. Four archaeological Cedrus atlantica wood samples dating from the 16th, 17th, 19th and 21st centuries were analyzed using Fourier Transform Infrared spectroscopy. The infrared spectroscopic analyses demonstrated in detail the significant changes that occurred in different molecular groups of lignocelluloses fibers, as evidenced by the decrease of band intensities related to the carbohydrates and lignin. The influence of the natural degradation process on these fibers was enhanced by the gradual decline in fingerprint (1800-800cm-1) related to the cellulose amount accompanied by the detection of new carbonyl band at 1650cm-1 attributed to the C=O quinone suggesting the lignin’s oxidation.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3