Spectral representation of stochastic integration operators

Author:

Rybakov Konstantin

Abstract

The spectral representation for stochastic integration operators with respect to the Wiener process is proposed in the form of a composition of spectral characteristics used in the spectral form of mathematical description for control systems. This spectral representation can be defined relative to the various orthonormal bases. For given deterministic square-integrable kernels, the spectral characteristic of a stochastic integration operator is determined as an infinite random matrix. The main applications of such a representation suppose solving linear stochastic differential equations and modeling multiple or iterated Stratonovich stochastic integrals. Specific formulas are provided that allow to represent the spectral characteristic for the stochastic integration operator, the kernel of which is the Heaviside function, relative to Walsh functions and trigonometric functions.

Publisher

EDP Sciences

Subject

General Medicine

Reference18 articles.

1. Skorohod A.V., Random Linear Operators (Springer, Dordrecht, 1984)

2. Solodownikow W.W., Semjonow W.W., Peschel M., Nedo D., Berechnung von Regelsystemen auf Digitalrechnern. Anwendung von Spektral- und Interpolationsmethoden (Verlag Technik, Berlin, 1979)

3. Panteleev A.V., Rybakov K.A., Autom. Remote Control, 72(2), 393 (2011)

4. Boyd J.P., Chebyshev and Fourier Spectral Methods (Dover Publ., New York, 2000)

5. Guo B.-Y., Spectral Methods and Their Applications (World Scientific, Singapore, 1998)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3