Development of a free-form tooth flank optimization method to improve pitting resistance of spur gears

Author:

Kalligeros Christos,Koronaios Panagiotis,Tzouganakis Panteleimon,Papalexis Christos,Tsolakis Antonios,Spitas Vasilios

Abstract

Although steel involute gears are the standard solution for gear transmissions, they tend to suffer from poor pitting resistance. Pitting typically occurs when the gear tooth flanks have high equivalent curvature at the contact point and/or when the equivalent curvature is not constant across the contact path leading to high contact pressures and the development of surface fatigue. In this paper a new optimization method is presented to produce spur gear tooth flanks with improved pitting performance compared to involute ones. The tooth flanks are represented as B-spline curves, the control points of which are the variables for the optimization problem. The constraints were designed to ensure that all the examined profiles satisfy the law of gearing and do not contain any cusps or C1 discontinuities. Deterministic and stochastic algorithms were implemented and both closed and open path of contact gear sets were examined to determine the optimum tooth profile. The optimization results show that the maximum equivalent curvature of the optimum profiles is reduced by 83% compared to the corresponding standard profiles, while the deviation from the mean value is reduced by 98%. Both the standard and the optimized gears where examined comparatively also through finite element analysis. For the case selected the maximum contact pressure developed on the optimized gear set was 77% of the respective maximum contact pressure on the standard gear set whereas the corresponding deviation from the mean value was 5%. At the same time, the bending stresses developed in the optimized gear are slightly lower than those in the standard one.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3