Experimental Analysis of Flow Through Throttle Valve During Gaseous Cavitation

Author:

Polášek Tomáš,Hružík Lumír,Bureček Adam,Ledvoň Marian

Abstract

The multiphase flow in oil hydraulic systems has a very significant effect on the correct operation of the hydraulic system. Air can be found in various states in hydraulic systems, while free entrained air in the form of bubbles has the potential to be the most problematic. It especially affects the compressibility of the hydraulic liquid resulting in reduced stiffness of the hydraulic system. The actuators of the hydraulic mechanisms then do not achieve the fast response and the precision of movements depending on the input control signals. One possibility for the contamination of hydraulic fluid by air bubbles is through a phenomenon known as gaseous cavitation. This is a phenomenon in which gas is released when the pressure drops below the saturation pressure of the dissolved gas in the liquid. This article focuses on the experimental analysis of the flow through the throttle valve which is affected by the formation of air bubbles at the throttle edge of the valve. The regions of gaseous cavitation were observed at the different flow cross-section of the throttle valve. The throttle valve was placed into the block of transparent material to provide visualization of the individual measurements. The article is supplemented with photographs of the individual measurements showing the gaseous cavitation inception. Research background: flow cross-section, cavitation phenomenon, discharge coefficient. Purpose of the article: Effect of flow cross-section size and flow velocity on cavitation development. Methods: Experimental measurements. Findings & Value added: The investigation of the gaseous cavitation inception, Visualization of the individual measurements.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3