Modelling the cracking of fresh concrete

Author:

Combrinck Riaan,Meyer Marnu,Boshoff William P.

Abstract

The cracking of fresh concrete, while still in a plastic state, includes both plastic settlement and plastic shrinkage cracking, which starts once the concrete is cast to around the final setting time. The cracking process is complex and is influenced by numerous factors which include the climate, mix proportions, element geometry and construction procedures. Preventing these cracks therefore remains a problem in practice. One of the reasons for this is the lack of a model that can be used to determine the location, timing and severity of the cracking before the cracking occurs. The main challenges with such a model are the testing of the fresh concrete to determine the tensile material properties, the appropriate constitutive law needed, and the time dependency of material properties as well as the anisotropic volume change. This paper presents a finite element model that uses a total strain smeared cracking approach and accounts for both the time dependency of material properties and the anisotropic volume change. The model gives an adequate representation of the cracking behaviour of fresh concrete for extreme climates but not for normal to moderate climates, mainly due to the size discrepancy between the interior and surface cracks during experiments as well as the relaxation of stresses that are not accounted for in the model. A parameter study showed that both the settlement and shrinkage strains significantly influence and therefore govern the size of the final plastic crack, while the material mechanical properties only influence the time of crack onset and rate of crack widening.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3