Mechanical properties and self-sensing ability of amorphous metallic fiber-reinforced concrete

Author:

Bouillard Théophile,Turatsinze Anaclet,Balayssac Jean-Paul,Toumi Ahmed,Helson Olivier,Bourbon Xavier

Abstract

The aim of this research work is to develop a corrosion resistant fiber-reinforced concrete for radioactive waste disposal structures. In the case of precast concrete, the use of fibers is a solution to reduce the amount of steel reinforcement while maintaining high mechanical performance and durability. Concrete has a low strain capacity and a limited tensile strength. Generally, reinforcing bars are used to ensure tensile strength. A fiber reinforcement can also help to overcome such a mechanical weakness. For this purpose, an amorphous metallic fiber (AMF), corrosion-resistant and suitable for application in severe environment conditions are used. The fresh and hardened properties of the self-compacting fiber reinforced concrete (SCFRC) are studied with volume fractions of AMF of 0% and 0.28% and with three different aspect ratios (82, 114 and 123). Flexural tensile tests according to European standard EN 14651 are conducted to quantify the contribution of the fiber reinforcement on the residual flexural tensile strength. Since these fibers are electrically conductive, they are also tested to design a smart concrete. For this purpose, electrical resistance of specimens submitted to cyclic flexural loadings are monitored using a Wheatstone bridge.

Publisher

EDP Sciences

Subject

General Medicine

Reference23 articles.

1. Behbahani Hamid and Nematollahi Behzad, “Steel Fiber Reinforced Concrete: A Review”, pp. 1–12, (2011)

2. Fiber concrete overpacks/physico chemical characteristics: cement and fiber characterization

3. Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete

4. Hameed R., “Contribution of metallic fibers on the performance of reinforced concrete structures for the seismic application”, p. 383, (2010)

5. Dynamic Brazilian test of concrete using split Hopkinson pressure bar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3