The Design of Facial Expression Detection System to Determine the Level of Customer Satisfaction using K-Nearest Neighbor Method

Author:

Rahmawati Diana,Joni Koko,Maulana Muhammad Iqbal,Nahari Rosida Vivin,Ibadillah Achmad Fiqhi,Setiawan Heri,Saputro Adi Kurniawan

Abstract

Facial expressions are one of the ways humans communicate to convey personal emotions to their communication partner nonverbally. Therefore, human facial expressions can be used for various purposes, one of which is knowing customer satisfaction. So far, customers of Bank Rakyat Indonesia (BRI) provide feedback on service quality using only a polling system, namely by filling out a criticism and suggestion form and then entering it in a suggestion box which is distinguished between satisfied and dissatisfied. However, such a method is less effective because it can be easily manipulated by customers and customers are often indifferent to the feedback. So that the improvement of service quality tends to be less effective. This research will design a system that can recognize human facial expressions to determine the level of customer satisfaction with input data in the form of video data taken by a webcam camera with the viola-jones method to detect faces and determine facial patterns. Then the facial data will be classified using the K-Nearest Neighbor method to determine the type of facial expression. Determination of the value of k will determine the success rate of facial expression detection. The processed data will be displayed on a liquid crystal display (LCD) and then stored in a MySQL database. The results showed that the accuracy of facial expression detection was 80.77% from 52 facial expression data.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensuring Customer Satisfaction on Long Distance Train Journeys: An Indian Railways Case Study;2023 IEEE Vehicle Power and Propulsion Conference (VPPC);2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3