Features of the formation of conductive films during thermal and laser sintering of silver nanoparticles stabilized by an ethoxylated carboxylic acid

Author:

Titkov Alexander I.,Malbakhova Inna A.,Borisenko Tatyana A.,Vorobyev Alexander M.,Logutenko Olga A.,Baev Sergey G.,Bessmeltsev Viktor P.

Abstract

Silver nanoparticles (Ag NPs) of ~ 6 nm in size were synthesized by the reduction of silver 2-[2-(2-methoxyethoxy)ethoxy]acetate by benzyl alcohol acting both as the solvent and as the reducer. The as-synthesized Ag NPs were dispersed in a mixture of nontoxic solvents with different boiling temperatures (butanol and propylene glycol ethers) to prepare ink. The ink was spin-coated on polyimide films and processed with thermal and laser sintering. After thermal sintering, the silver films have a non-uniform structure and contain many voids, causing their resistivity to be quite high (28 µΩ×cm). Laser sintering of the Ag NPs inks spin-coated on a polyimide film using a fiber laser operating at a wavelength of 1.064 µm in a pulse-periodic mode results in a uniform film structure, almost without voids, with a lower resistivity of 2.3 µΩ×cm. Laser sintering in this case is a promising method to fabricate conductive patterns on various substrates, including polymer flexible ones.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3