Cavitation shapes measurements in piston-ring lubrication and their link to lubricant properties

Author:

Dellis Polychronis

Abstract

The emissions control regulations introduced by governments are set to improve engine quality and reduce the impact automobiles have on the planet. The regulations imposed on the manufactures have proven very difficult to meet. To this effect some of the leading names in the industry were pushed to invest significant funding in research, development and optimisation of combustion, powertrain and tribology inside the ICE. Their goal is reduction of fuel consumption and emissions while increasing performance and durability. The piston-ring and cylinder-liner interaction is the major source of frictional losses for reciprocating ICEs and so, it is important to avoid any failure of piston-rings to effectively control lubricant transport from the sump onto the cylinder walls and further to the combustion chamber. This lubricant will participate in the emissions through absorption and desorption of fuel in the oil film at the cylinder walls, also resulting in lubricant contamination and consumption. The objective of this project is to assist with the investigation of phenomena occurring in the cylinder liner and piston-ring interaction under different operating conditions. The following investigations have been carried out, flow and cavitation visualisation in a model lubricant rig and cavitation visualisation in a newly designed optical engine.

Publisher

EDP Sciences

Subject

General Medicine

Reference13 articles.

1. Effect of friction force between piston rings and liner: A parametric study of speed, load, temperature, piston-ring curvature, and high-temperature, high-shear viscosity

2. Cavitation development in the lubricant film of a reciprocating piston-ring assembly

3. Dellis P., Aspects of lubrication in piston cylinder assemblies, (PhD Thesis, Mech.Eng. Dept., Imperial College London, 2005).

4. Laser-induced fluorescence measurements in a single-ring test rig: Evidence of cavitation and the effect of different operating conditions and lubricants in cavitation patterns and initiation

5. Vasilakos I., Cavitation in the cylinder-liner and piston-ring interaction in internal combustion engines, (Doctoral Thesis, School of Engin. and Mathem. Sc., City University London, London, 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3