Methods to identify time series abnormalities and predicting issues caused by component failures

Author:

Deac Crina Narcisa,Deac Gicu Calin,Chiscop Florina,Popa Cicerone Laurentiu

Abstract

Anomaly detection is a crucial analysis topic in the field of Industry 4.0 data mining as well as knowing what is the probability that a specific machine to go down due to a failure of a component in the next time interval. In this article, we used time series data collected from machines, from both classes - time series data which leads up to the failures of machines as well as data from healthy operational periods of the machine. We used telemetry data, error logs from still operational components, maintenance records comprising historical breakdowns and replacement component to build and compare several different models. The validation of the proposed methods was made by comparing the actual failures in the test data with the predicted component failures over the test data.

Publisher

EDP Sciences

Subject

General Medicine

Reference7 articles.

1. Azure AI guide for predictive maintenance solutions

2. Wikipedia Gradient boosting

3. Advanced Machine Learning and Signal Processing, IBM, Coursera

4. Microsoft Decision Trees Algorithm

5. Using CAD and Flow Simulation for Educational Platform Design and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3