Alterations in the microhardness of a titanium alloy affected to a series of nanosecond laser pulses

Author:

Ushakov Ivan,Simonov Yuri

Abstract

The alterations in the microhardness of a titanium alloy Ti85.85Al6.5Zr4Sn2Nb1Mo0.5Si0.15 subjected to laser treatment were investigated. Laser processing consists of a series of pulses with durations 20 ns. We used various methods of laser processing, which differed in power density, wavelength, geometrical pattern of irradiation and so on. The dependences of the microhardness on the load on the indenter were found. The laser processing modes providing the increased microhardness are determined. The investigations were carried out at loads from 0.49 N to 4.9 N, with maximum indentation depth of the Vickers pyramid up to 12 μm. Vickers microhardness can be increased by 20 – 40 %. At the same time, the plastic properties of the hardened layer are improved. The probability of crack formation during indentation of the initial alloy increased with a load on the indenter and reached 0.52 for a load of 4.9 N. In two of the treated areas of the three presented, crack formation was not recorded at any load. The mechanisms of hardening of the material surface layer under the influence of a laser pulse are discussed. Using the methods of computational mathematics, the character of sample heating under the influence of a single laser pulse is determined. The perspectives for the development of the proposed processing method are permitting to obtain the optimal mechanical properties of the hardened layer are discussed.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3