Preliminary Study of Electrochemical Advanced Oxidation of Organic Dyes on TiO2

Author:

Banu Alexandra,Mocirla Madalina,Soylu GizemNur

Abstract

Methyl orange (MO) is an environmental concern because their degradation products are highly toxic to aquatic microorganisms and carcinogenic, also their degradation products are mutagenic to humans. Electrochemical oxidation is one of the promising technologies for the dye wastewater de-pollution, which are obtained extensively attentions because it holds the advantages of total oxidization of dyes to CO2 and H2O. Titanium dioxide has emerged as the leading candidate to provide complete destruction of organic pollutants via heterogeneous photocatalysis that result in total mineralization of many organic pollutants. Though this process offers actual annihilation of the dye moleculesatavery high efficiency, thepost-treatmentrecoveryof TiO2 canbecostly. The titanium nanotubes are typically produced by anodic oxidation of the titanium foil in various electrolytes.Degradation of methyl orange (MO) was conducted by electrochemical oxidation method with Ti/TiO 2 nanotubes anodes. Were prepared samples of TiO2 nanotubes by anodizing titanium in an electrochemical bath consisting of 1:1 waterglycerol with 0.4% of HF using different conditions: 25V for 8 hours, 30V for 3 hours in the stationary state, 30V 3 hours under ultrasound stirring. The oxidation efficiency was determined by UV-VIS analysis of the electrolyte.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3