Abstract
Active vibration damping of mechanical systems based on applications of smart materials has a large application potential and is getting more and more popular. In active vibration systems the fast response of actuators to the signals generated by sensors is one of the most important element that decides of the system’s efficiency because the idea is to generate force by active elements that will suppress the vibrations detected by the sensors. In this paper results of laboratory tests of a control signal’s phase shift influence on the efficiency of a system for active vibration damping based on application of Macro Fiber Composite (MFC) piezoelectric transducers are presented. MFCs are modern piezoelectric composite transducers produced as a thin, elastic films and can be easily installed on the surface of the mechanical subsystem or laminated in composite structures. The impact of the phase shifting between signals generated to power the actuator on the damping efficiency was verified and analysed. It was verified in what phase angle the damping of vibration has the best efficiency and if the shift of the signals causes the linear loss of the system efficiency. It was also verified whether it causes the same effects in both directions of shifting (advance or delay in the phase of the signal supplying the damper relative to the signal generated by the beam’s vibration).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献