Introduction of a redundant actuator using planetary gear trains for human centred robotics

Author:

Crispel Stein,López-García Pablo,Verstraten Tom,Saerens Elias,Lefeber Dirk

Abstract

Matching motor efficiency and performance with the load demands can significantly improve the overall efficiency of a driveline. Inspired by the automotive sector -with the high interest of hybrid and electric cars currently-, the authors have studied how state of the art technologies can be used in the relatively new field of collaborative and Human centred robotics. Multiple transmission systems have been considered, among others redundant actuators (both static and kinematic) and continuously variable transmissions. Based on these findings and the experience of the research group on customised planetary gear trains for Human Limb Assistance and Replication, an extensive review of existing redundant actuators is presented in combination with an alternative transmission system which does not need any auxiliary gear transmissions and hence can be lighter and more compact than state of the art drivelines for Human centred robotics. A calculation was performed -including the efficiency model presented by Müller- which shows the high potential of this type of dual-motor actuator.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3