Notes on the behaviour of trajectories of polynomial dynamic systems

Author:

Andreeva Irina

Abstract

Dynamic systems play a key role in various directions of modern science and engineering, such as the mathematical modeling of physical processes, the broad spectrum of complicated and pressing problems of civil engineering, for example, in the analysis of seismic stability of constructions and buildings, in the fundamental studies of computing and producing systems, of biological and sociological events. A researcher uses a dynamic system as a mathematical apparatus to study some phenomena and conditions, under which any statistical events are not important and may be disregarded. The main task of the theory of dynamic systems is to study curves, which differential equations of this system define. During such a research, firstly we need to split a dynamic system’s phase space into trajectories. Secondly, we investigate a limit behavior of trajectories. This research stage is to reveal equilibrium positions and make their classification. Also, here we find and investigate sinks and sources of the system’s phase flow. As a result, we obtain a full set of phase portraits, possible for a taken family of differential dynamic systems, which describe a behavior of some process. Namely polynomial dynamic systems often play a role of practical mathematical models hence their investigation has significant interest. This paper represents the original study of a broad family of differential dynamic systems having reciprocal polynomial right parts, and describes especially developed research methods, useful for a wide spectrum of applications.

Publisher

EDP Sciences

Subject

General Medicine

Reference33 articles.

1. Andronov A., Leontovich E., Gordon I., Maier A., Qualitative theory of second-order dynamic systems (New York: Wiley, 1973)

2. Nilpotent centers of cubic systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3