Performance evolution and tensile behaviour of long-term exposed UHPC under sustained load, aggressive environments and autogenous healing

Author:

Davolio Marco,Recchia Giovanni,Altomare Maria Ylenia,Soave Francesco,Al-Obaidi Salam,Ferrara Liberato

Abstract

An extended experimental campaign was conducted to analyse the evolution of UHPC tensile performance over time as affected by sustained flexural load and aggressive environments both interacting with its autogenous self-healing capacity. A new methodology including both destructive and non-destructive tests was proposed. Three different mix designs were tested, with steel fibres, crystalline admixture, and various nanomaterials. Specifically, the first batch included alumina nano-fibres, while the second one cellulose nanocrystals. The last one was used as a reference and did not include nanomaterials. Thin beam specimens (500x100x30 mm) were pre-cracked and exposed to three different environments, under four-point bending sustained load. The specimens were cured for 1, 2, 3, 6, 9, and 12 months respectively, being exposed to a chloride solution, geothermal water, and tap water as a reference. After the aforesaid scheduled exposure times, two nominally identical specimens were tested for each condition, the first in four-point bending and the second in direct tension. To compare the results, a simplified five-point inverse analysis was adapted for beams with different slenderness, providing a quadrilinear constitutive law derived from the structural flexural behaviour of four-point bending tests. Test results allowed to highlight the effects of each parameter – type of material and exposure – on the self-healing effectiveness and the tensile response, also defining their evolution over time. The self-healing process resulted in an almost complete recovery after the first two or three months, and the materials were able to maintain a constant performance over longer periods, regardless of the conditions they were exposed to.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3