Initial proposal of a novel voltammetric sensor system for the detection of concrete carbonation by means of PCA model

Author:

Ana Martínez Ibernón,Ramon Lliso-Ferrando Josep,Isabel Gasch,Manuel Valcuende,Manuel Gandía-Romero José,Juan Soto

Abstract

The monitoring of concrete carbonation takes an important role in the structures maintenance, considering that corrosion induced by this phenomenon is one of the mainly failure causes in the Reinforcement Concrete Structures (RCS) located in industrial zones, roads and cities. Carbonation of concrete is produced by the penetration of the CO2 inside of the porous net, which is mainly combined with the Ca(OH)2 contained in the concrete pore solution producing carbonates with low solubility and eventually causing a pH drop until neutral levels. The pH drop produces the instability and final generalised destruction of the rebars passive layers, which is the step that precedes generalized corrosion. The current existing systems to detect concrete carbonation are based on potentiometric sensors to detect the pH of concrete pore solution. These have some limitations such as the interference of different reactions on the sensor surface. Considering these limitations, in this study a novel system of voltammetric Au sensors embedded in concrete for the detection of concrete carbonation was presented. In the voltammetric sensor, the potential sweep signal applied comprises the potential range where the effect of the pH variations has more influence in the sensor response. Then the response processing by means of the multivariate analysis PCA (principal component analysis) allows to manage a huge quantity of variables and to reduce the effect of the interference with other analytes, increasing the importance of the pH changes effect in the obtained data. Thus, increasing the reliability of the system to detect the concrete carbonation.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3