Dynamic model of isothermal moving bed reducer for chemical looping hydrogen production

Author:

Kataria Priyam,Yeo Wan Sieng,Nandong Jobrun

Abstract

This paper investigates process modelling and reactor design for the reducer in the chemical looping hydrogen production (CLHP) process. The CLHP process adopts a three-reactor technology that can provide an efficient and sustainable alternative to the current hydrogen production technology via steam methane reforming (SMR), which suffers from several limitations during industrial operation. CLHP can achieve higher thermal efficiency than SMR and provide a carbon capture and storage (CCS) system. So far, no report on the modelling analysis of the reducer despite its critical dependence on temperature. The modelling study adopts the modified pellet-grain model at the micro-scale and counter-current moving bed model reactor at the reactor level. Simulation results of the gas-solid behavior based on the multi-scale model agree with the literature evidence. Critical information from the model revealed that the oxygen carriers (solids) can attain a desired state, but the syngas remains underutilized. The model simulation further suggests that lowering the gas-solid velocity ratio (Vgs) can substantially promote the syngas conversion. However, the Vgs value must remain above a threshold value (170), defined through the limitation of gas-solid velocities in a moving bed reactor. Since a CCS system requires high purity (>95%) of the product gas, rigorous temperature-pellet size optimization is vital to achieving the target purity while maintaining desired solid state.

Publisher

EDP Sciences

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3