Thermal performance of biosourced materials on Buildings: The case of Typha Australis

Author:

Ba Labouda,El Abbassi Ikram,Kane Cheikh S.E,Darcherif A-M,Ndongo Mamoudou

Abstract

Developing countries are facing population growth, which leads, on the one hand, to increased requirements for buildings and, on the other hand, to the depletion of fossil fuels along with exposure, of people living in those areas, to some detrimental consequences of climate change. Because of these factors, we propose approaches to control energy consumption in buildings. In some countries, the architectures adopted are not adequate to the environment and climate, resulting in discomfort in those buildings, in such circumstances, residents resort to the use of energy systems, such as heating, ventilation, and air conditioning, which leads to exorbitant electricity bills. Housing consumes 40% of the world's energy and is responsible for a third of greenhouse gas emissions. Optimizing energy needs in buildings is a solution to overcome these problems. For this purpose, there are solutions such as: the design of the building characterized by its shape and envelope, while using less energy-consuming equipment. For several years, the building materials sector has been developing with a particular focus on bio-source materials, which are generally materials with good thermal performance. In order to highlight the thermal performance of bio-source materials, we will study the case of Typha Australis which is a plant of the Typhaceae family that grows abundantly in an aquatic environment mainly in the Senegal River valley.Recent studies showed that Typha Australis has good thermal insulation properties. In order to determine the impact of Typha Australis on a building, a dynamic thermal simulation was carried out using the Trnsys software according to specific scenarios, the Typha was mixed with other local materials and used as a wall insulation panel, the result of the study shows that this fiber has allowed us to optimize energy consumption in a building. Mixing Typha with other materials (e. g. clay) is a promising solution for energy efficiency in buildings.

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. UN-Habitat, world Habitat day 2014 -voice from shms background paper, [online] Available http://unhabitat.org/wpcontent/uploads/2014/07/WHD-2014-Background-Paper.pdf.

2. Sustainable energy in Africa: A comprehensive data and policies review

3. Introduction to control of solar gain and internal temperatures by thermal insulation, proper orientation and eaves

4. Kabore M., 2014, PhD. Thesis. 2IE, Université de Grenoble Alpes, Génie Civil et Science de l'habitat, LISTIC-EA3703, LESEE, ED-SISEO, ED-2IE, P24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3