Research on Methods for Very Large Scale Integration Track Assignment Routing

Author:

Yu Hui,Huang Shipeng,Ren Lu

Abstract

Routing is a crucial stage in the physical design of Very Large Scale Integration (VLSI) circuits, comprising three phases: global routing, track assignment routing, and detailed routing. With the development of VLSI circuits, scholars have proposed various track assignment routing algorithms. However, improving the efficiency of track assignment routing and optimizing conflicting design rules have become bottlenecks in track assignment routing problems. This study addresses these bottlenecks by utilizing single-level horizontal and vertical Steiner trees to extract routability information of local wire nets, resolving the adaptation issue between global routing and detailed routing. The proposed algorithm enhances routability information by an average of 16.07% across ten benchmark circuits. Additionally, a Generative Neural Network model based on Conditional Variational Autoencoder (CVAE) is employed to improve the efficiency of track assignment routing, yielding significant simulation results. Furthermore, a negotiation-based tear-and-reassign approach is utilized to address track congestion issues, resulting in an average optimization of 26.03% in overlap cost, with a tradeoff of sacrificing 6.67% of wirelength on average.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3