Fabrication and Characterization of a Stir Casting-Based Aluminium Hybrid MMC Reinforced with SiC, TiC, and MoS2

Author:

Arun M.,Ragupathy K.,Anand T.,Vishvanathperumal S.

Abstract

The need for strong, lightweight materials has prompted the creation of innovative metal matrix composites based on aluminum. The properties of metal matrix composites that are uniformly dispersed with nanoparticles are much superior to those of monolithic alloy and microparticle-reinforced composites. The objective of this work was to create and evaluate a metal matrix composite reinforced with MoS2, SiC, and TiC that is a hybrid aluminum alloy, Al6061. It was also investigated how the weight percentages (3, 6, 9, and 12%) of MoS2, SiC, and TiC reinforcement affected the mechanical, morphological, tribological, and physical characteristics of the metal matrix composite. The addition of SiC and MoS2 increased the density of the reinforced Al6061 composite when compared to as-cast non-reinforced Al6061. It was found that the hybrid composite Al6061/12% SiC/4% MoS2 had the maximum density. The hybrid metal matrix composite's toughness increased as the proportion of TiC weight increased. The composite made of Al6061, 12% TiC, and 4% MoS2 had the maximum hardness, measuring 114.03 HV. The composite Al6061/12% TiC/4% MoS2 has the most ultimate tensile strength. The tribology analysis revealed that when applied stress increased from 10 to 50 N, mass loss increased dramatically. Because of the solid MoS2 lubricant and the development of the TiC layer at the contact zone, Double- and triple-reinforced specimens had less wear loss than non-reinforced specimens, as shown by the wear performance of hybrid composites. The main wear mechanisms of the composites were delamination wear and wear debris.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3