Fuzzy Logic-Based Energy Storage Control in Smart Grids for Grid Stability

Author:

Kumar Singla Atul,Srilatha CH.

Abstract

This study studies the usefulness of fuzzy logic-based control systems for improving energy storage control inside smart grids to promote grid stability. The study combines empirical data analysis, including energy storage system (ESS) specifications, smart grid operational data, fuzzy logic-based control rules, and ESS state variables, to demonstrate the suitability and efficiency of using fuzzy logic-based control mechanisms in dynamic grid environments. The examination of ESS specs revealed a wide range of maximum capacities, spanning from 100 kWh to 200 kWh. Additionally, the charge and discharge efficiencies exhibited variations, ranging from 85% to 96%. An analysis of operational data from the smart grid revealed significant variations in grid frequency, ranging from 50.0 Hz to 50.3 Hz. Voltage levels also exhibited fluctuations, ranging from 229 kV to 232 kV. Additionally, renewable energy generation from solar and wind sources showed fluctuations between 1400 kW to 1650 kW and 800 kW to 850 kW, respectively. The incorporation of linguistic factors and fuzzy rules based on grid parameters facilitated the adaptive control of ESS units in the construction of fuzzy logic-based control rules. The analysis of ESS state variables revealed dynamic changes in the state of charge, which ranged from 60% to 90%. Additionally, oscillations in available energy were observed across different timestamps and ESS units. An investigation of in state variables, revealed adaptive changes percentage change demonstrating varying degrees of variations in state of charge, available energy, and operational states at various timestamps. The results emphasize the flexibility and efficiency of control systems based on fuzzy logic in improving energy storage operations in smart grids, highlighting their capacity to improve grid stability and efficiently handle changing grid characteristics.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3