Effective texture features in mammogram images via multi-roi segmentation

Author:

Prasad K. Rajendra,Praveen Kumar Chatakunta,Suneel Sajja,Raghu Kumar Lingamallu

Abstract

Digital mammography increasingly necessitates image segmentation for the purpose of dividing mammograms into individual slices. For the purpose of removing suspicious masses or tumours from mammograms, this process is carried out using a region of interest (ROI). More training photos are needed for mammography image classification, and these circumstances, ROI requires more processing time. The temporal complexity difficulties with the suggested multi-ROI method are the subject of this article. To show how effective the suggested multi-ROI is compared to the current segmentation approach, experiments are conducted on benchmarked datasets.

Publisher

EDP Sciences

Reference13 articles.

1. Finding the best set of K paths through a trellis with application to multitarget tracking

2. A softbot-based interface to the Internet

3. de Campos T. E., Babu B. R., and Varma M., “Character recognition in natural images,” in Proceedings of the International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, February 2009

4. Krizhevsky I. Sutskever, and Hinton G. E., “Imagenet classification with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–1105.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3