Genetic algorithms for optimizing the layout of wireless charging networks

Author:

Mittal Vaibhav,Shamila M.

Abstract

This study explores the improvement of wireless charging network configurations for electric cars (EVs) using genetic algorithms, with the goal of increasing charging efficiency and network performance. The network optimization process takes into account the starting characteristics of include their geographical coordinates, power capacity, and beginning energy levels. Examination of the distance matrix exposes diverse distances between nodes, which impact energy consumption and charging efficiency. The energy consumption estimates between pairs of nodes illustrate the charging needs across the network, revealing that nodes that are farther away have greater energy consumption. The use of genetic algorithms yields a wide range of layouts that are assessed based on their fitness ratings, indicating the excellence of configurations in terms of coverage and connection. Percentage change study demonstrates the modifications in power capacity and node energy levels after optimization, showing prospective improvements in charging capabilities and efficiency. The correlation between node location and energy use is apparent, as nodes in closer proximity demonstrate decreased energy utilization. The convergence of fitness scores demonstrates the algorithm's effectiveness in achieving solutions that are very close to ideal, resulting in significant improvements in charging coverage and energy efficiency. The study highlights the effectiveness of genetic algorithms in improving wireless charging networks, providing valuable information on spatial optimization tactics, energy use patterns, and the resulting improvements in network performance. These results have implications for creating wireless charging infrastructures that are more efficient and long-lasting, in order to satisfy the changing needs of electric car charging networks.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3