Author:
Aasim Muhammad Tayyab,Tariq Muhammad Shaheer,Danish Muhammad,Abbasi Iqra,Raza Ali,Haider Hammad
Abstract
The advancement of an environmentally friendly setting is complex due to the significant carbon footprint of cement, substantial construction and demolition waste, and large quantities of industrial waste wastewater. This study aims to increase building sustainability by analyzing the long-term durability of recycled aggregate geopolymer concrete (RGC) manufactured using four different wastewaters. To evaluate each wastewater’s effect on sulfuric acid resistance and chloride ion migration (CIM) at various curing times, RGC was used in place of fresh water in the tests. The results revealed that, when it came to acid attack, RGC made with fertilizer industry wastewater had the highest mass loss (41% higher compared to control concrete) and CIM (29% higher compared to control concrete). According to statistical studies, using wastewater from textile, fertilizer, and sugar firms did not substantially alter mass loss from acid attack or CIM.