AI driven ECG arrhythmia diagnosis

Author:

Manohar Udutha,Rangha Vardhan G.,Shireen Mohammad,Ramya T.

Abstract

The accurate and timely diagnosis of cardiac arrhythmias is crucial for effective patient management and improved health outcomes. However, the precise identification of arrhythmias in electrocardiogram (ECG) data often requires specialized medical expertise, leading to potential delays and errors in diagnosis. To address these challenges, this project introduces an AI-driven system for ECG arrhythmia diagnosis. Employing advanced deep learning techniques, the proposed system leverages a comprehensive dataset of annotated ECG recordings to train a robust model capable of detecting and classifying various types of arrhythmias. The model is designed to process raw ECG signals, extract relevant features, and generate clinically meaningful insights, enabling automated and rapid identification of arrhythmic patterns. Through a user-friendly interface, medical professionals can upload ECG data for real-time analysis, allowing for prompt decision-making and personalized patient care. Furthermore, the system offers interpretable results, highlighting key indicators and providing detailed explanations to aid clinicians in understanding the diagnostic outcomes.

Publisher

EDP Sciences

Reference10 articles.

1. Detection and Analysis of Cardiac Arrhythmias from Heartbeat Classification

2. Detection of Cardiac Arrhythmias in Electroc Ardiograms Using Deep Learning

3. Robust R-Peak Detection in Low-Quality Holter ECGs Using 1D Convolutional Neural Network

4. Subhashini Dr.1, Sushma Mareddy, Yeshwanth Goud Basampally, Nikhil Merugu, Sai Kumar Reddy Gantla, “AI Medical Diagnosis Application” Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021) IEEE Xplore Part Number: CFP21K74– ART; ISBN: 978-0-7381-1327-2.

5. DeepArrNet: An Efficient Deep CNN Architecture for Automatic Arrhythmia Detection and Classification From Denoised ECG Beats

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3