The Fabrication of Non-Implant 3D Printed Nose

Author:

Chuan Yong Leng,Andrews Elliot

Abstract

Non-surgical rhinoplasty procedures which involves the use of injectable derma fillers are highly risky as patients are susceptible to side effects and complications that may cause unwanted changes in their appearance. This research explores an alternative method of non-surgical rhinoplasty for patients seeking augmentation of the nose with the use of three-dimensional (3D) printing. Most rhinoplasty procedures are conducted with the intention of enhancing the aesthetical features of the nose, a 3D model nose was designed based on the combination of the average and the ideal aesthetic parameters of the Northern European Caucasians and South Asia Chinese nose. The modelling of nose is done using the SolidWorks CAD software. An initial design was sketched in a polygon mesh form and further improved on. Different printing materials and infill densities were compared to determine the suitable printing technique. The final nose model is then printed using the Ultimaker 3D printer using Polylactic acid (PLA) with an infill density of 100% at a thickness of 1.4 mm. An inner layer to the 3D printed nose was developed for comfortable attachment of the nose model to human skin. The inner layer was fabricated using agar gelatine. Experiments were carried out to increase the strength and adhesiveness of the gelatine so that it could adhere to the human skin and the PLA surface. Tensile and adhesive strength tests were carried out to determine the suitable gel composition for the attachment of the nose to the user’s face. The key outcome from the experiments using natural gelatine was capability of gel to act as an inner layer for the temporary attachment of the 3D nose model to the human skin

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developments and Trends in Additively Manufactured Medical Devices;Additive Manufacturing in Biomedical Applications;2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3