Author:
Trong Nguyen Van,Choi Yong-Woon,Yoon Jung-In,Choi Kwang-Hwan,Son Chang-Hyo,Kim Young-Bok
Abstract
The demand of river-crossing is steadily increasing, the speedy and safety are two most important factors that decide the success of the applied solutions. This paper partially proposes a method for ribbon bridge installation and self-correction by describing the planar motion for a ribbon bridge, including several experimentally identified over a certain range of speeds. The mathematical modeling and system identification aim to provide a model that is sufficient for allowance of model-based control designs. In order to design the stable yaw control system of auto-correction of positional displacement, the Linear-Quadratic Regulator (LQR) was employed for yaw controller. Accordingly, the numerical study was carried out under a variety of disturbances to verify the system modeling and the efficiency of the designed controller. The simulation results demonstrate that the proposed controller has promising feasibility of the yaw placement automatic correct during operation and further extended results of the whole bridge system.
Reference8 articles.
1. Improve Ribbon Bridge, GENERAL DYNAMICS 2-3 (2012)
2. Seif M. S., Inoue Y., Marine Structures 11 (1998)
3. Dynamic responses of a ribbon floating bridge under moving loads
4. Fossen T. I., Marine Control System (Trondheim, Norway, 2002)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献