Anti-windup PI controller, SIPIC For Motor Position Control

Author:

Wong Kah Kit,Hoo Choon Lih,Mohyi Mohd Hardie Hidayat

Abstract

Control system plays a major role in the industry nowadays as it simplifies workload and reduce manpower. Among all the controlled applicable field, control system is heavily used in motor speed and motor position controls. Although there are various types of controllers available in the market, PID controller remains as one of the most used controller due to its simplicity. Unfortunately, PID controller experiences windup phenomenon which affects the controller’s performance. This paper proposes a new type of anti-windup PI controller, SIPIC for motor position control application and aims to validate the performance of this controller as compared to conventional PI controller. To test the ability of the controllers, both controllers were experimented using hardware testing. The settings conditions of with and without loadings were used under two different inputs of 0° to 90° and 270° to 90°. The results obtained show that under without loadings, both controller showed favourable performances. Though, SIPIC controller slightly outperforms PI controller by having lower overshoot and shorter settling time for a wider range of gains. The rise time of both controllers are similar as it is the lowest possible rise time due to hardware limitations. Experiment results with loading condition, for both inputs and when Kp is 1 and Ki is 15, PI controller shows unstable performance by having large amount of oscillations and overshoots. The settling time was unable to be determined as the controller did not settle within the given step time. On the other hand, at the same gain, SIPIC controller still shows acceptable performance. This shows that SIPIC controller is more favourable by having better stable performance for a wider range of gains while PI controller needs to be finely tuned to a specific gain to obtain desired results..

Publisher

EDP Sciences

Subject

General Medicine

Reference9 articles.

1. Active power filter control using neural network technologies

2. Slapak V., Kyslan K., and Durovsky F., “Position Controller for PMSM Based on Finite Control Set Model Predictive Control,” no. 1, 17–22 (2016).

3. Orman K., Basci A., Derdiyok A., Engineering E., and Engineering E., “Speed and Direction Angle Control of Four Wheel Drive Skid-Steered Mobile Robot by Using Fractional Order PI Controller,” 14–20 (2016).

4. Precision Position Control of a Voice Coil Motor Using Self-Tuning Fractional Order Proportional-Integral-Derivative Control

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Evolutionary Multi-Objective Optimization Algorithms on the Tuning of PI Controllers for Electric Drives;2023 IEEE 8th Southern Power Electronics Conference and 17th Brazilian Power Electronics Conference (SPEC/COBEP);2023-11-26

2. Tuning of PI Controllers for Electric Drives using Evolutionary Multi-Objective Optimization Algorithm;2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI);2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3