Chemical Resistance of Glass Composite Materials Made From Incinerated Scheduled Waste Slag and SLS Waste Glass

Author:

Juoi Jariah Mohamad,Arudra Dilip,Rosli Zulkifli Mohd,Karim Khairu Ilwani,Suzain Farah Hanum

Abstract

Incineration of scheduled waste and landfilling of the incineration residue (Bottom Slag) is extensively practised in Malaysia as a treatment method for scheduled waste. Land site disposal of Bottom Slag (BS) may lead to environmental health issues and reduces the availability of land to sustain the nation’s development. This research aims in producing Glass Composite Material (GCM) incorporating BS and Soda Lime Silicate (SLS) waste glass as an alternative method for land site disposal and as an effort for recycling SLS waste glass. SLS waste glass originates from the urban waste has been a waste stream in most of the nation whereby the necessity for recycling is in high priority. Batches of powder mixture is formulated with 30 wt. % to 70 wt. % of BS powder and SLS waste glass powder for GCM sintering. The powder mixtures of BS and SLS waste glass is compacted by uniaxial pressing and sintered at 800°C with heating rate of 2°C/min and 1 hour soaking time into tiles of 18mm×18mm. The GCM porosity and water absorption increases as the BS waste loading increases. Meanwhile, its bulk density increases as the BS waste loading decreases. The GCM tiles made from BS 30 wt. % and 70 wt. % SLS waste glass are determined to have the lowest water absorption of 1.17 % and porosity percentage of 2.2 % with the highest bulk density of 1.88 g/cm3. It was also found is found that the chemical resistance of these GCM tiles is classified as ULA (No visible Effect) and UHA (No visible Effect) after 5 day immersions in low and high concentration of acid and alkali solution; respectively (determined using MS ISO10545-13:2001(Ceramic Tile: Determination of chemical resistance) test. However, the chemical resistance is weak upon increased duration of 12 immersion days where severe corrosion effects on both surface tiles in low and high concentration chemical solutions. The penetration of chemical in attacking the samples are related to the presence of pores. Hence, further work should have aimed to reduce the amount of porosity presence in the produced tiles.

Publisher

EDP Sciences

Subject

General Medicine

Reference15 articles.

1. http://www.doe.gov.my/v2/files/legislation/pua0294y2005.pdf (Enviromental Quality Scheduled Wastes Regulations 2005, Accessed on 18/10/2011

2. http://www.epa.gov/osw/inforesources/pubs/training/incin.txt (Accessed on 2/8/2011)

3. Naganathan S., AbdulRazak H., Nadzriah S., Preliminary Investigation of Incinerator Bottom Slag as Controlled Low-Strength Material, Int. Con. On Construction And Building Technology, 2008

4. www.doe.gov.my (Accessed on January 2012)

5. Hazardous waste management: current status and future strategies in Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3