Effect of deformation and annealing temperature on the mechanical properties and microstructure of Al-4.5Zn-1.5Mg-0.9Cr (wt. %) alloy fabricated by squeeze casting

Author:

Agustianingrum Maya Putri,Arandana Nuzulian Akbar,Wijanarko Risly,Sofyan Bondan Tiara

Abstract

In order to produce structural products, Al-Zn-Mg alloys undergo various forming processes. Problems that are usually found in the forming process include peripheral coarse grain (PCG) and hot tearing which decrease mechanical properties and corrosion resistance of the alloys. Addition of microalloying element such as chromium (Cr) is an alternative to overcome these problems. The presence of Cr in Al-Zn-Mg alloys supresses the grain growth by preventing excess recrystallization. In this research 0.9 wt. % Cr was added to Al-4.5Zn-1.5Mg alloy and the deformation behaviour as well as subsequent recrystallization was observed. The alloy was fabricated by squeeze casting followed by homogenization at 400 °C for 4 h. The samples were cold rolled for 5, 10, and 20 %. The 20 % deformed samples were then annealed at 300, 400, and 500 °C for 2 h. Material characterization consisted of microstructure analysis using optical microscope and Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), hardness testing using Micro Vicker methods. The results showed that the deformed grain ratio was 1.6, 2.84, and 2.99 in the 5, 10, and 20 % deformed samples, respectively. The elongated dendrites were effective to increase the hardness of the alloy. Recrystallization was not detected during annealing at 300 and 400 °C, but was observed at 500 °C. Whereas, for the samples without Cr addition, recrystallization occurred at 400 °C. It means that the addition of Cr increased the recrystallization temperature of the alloy. It occured because (Al, Zn)7Cr dispersoids with size less than 1 μm impeded the dislocation motion during annealing, so that recrystallization was retarded. On the other hand (Al, Zn)7Cr dispersoids with size more than 1 μm promoted the formation of new grains around them by Particle Stimulated Nucleation (PSN) mechanism. In this case, the fine (Al, Zn)7Cr dominated so that recrystallization was slower.

Publisher

EDP Sciences

Subject

General Medicine

Reference14 articles.

1. 600 °C isothermal section of the Al–Cr–Zn ternary phase diagram

2. Eivani A. R., Zhou J., & Duszczyk J. Recent Trends in Processing and Degradation of Aluminium Alloys. Rijeka: InTech. (2011).

3. Rooy E. L. Aluminium Alloy Castings: Properties, Processes, and Applications. Detroit: ASM International Committee. (2004).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3