The competitive effect of non-magnetic defect and films thickness on the ferromagnetic critical temperature in Ising thin-films

Author:

Jaroenjittichai Atchara Punya,Laosiritaworn Yongyut

Abstract

In this work, Monte Carlo simulation was employed to investigate the competitive effect of non-magnetic defects and the thickness on the ferromagnetic behavior of Ising spins in a reduced geometry, i.e. thin-films. The magnetic properties were investigated as functions of temperature, defect concentration, and films’ thickness, especially in the ferromagnetic phase transition region. The finite size scaling was performed via the fourth order cumulant of the magnetization to extract the critical temperatures. From the results, the extracted critical temperatures agree well with previous theoretical investigation, where applicable. With increasing concentration of the nonmagnetic defects, the Ising phase-transition-point slightly shifts towards lower temperature, while the increase of films thickness enhances the critical temperature value. Being confirmed by the main-effect-plot analysis, the increase in thickness has much greater influences on the critical temperature than that of the defect concentration, which could be described in term of the average ferromagnetic interaction spin. As the role of the defect is negligence in the range of considered defect concentration (up to ten percent), it therefore suggests that the preparation of ferromagnetic films can be done in normal operating condition where defects usually occur. It may be not economically worth to aim for the perfectly smooth films when the associated application operates at temperatures away from the critical point.

Publisher

EDP Sciences

Subject

General Medicine

Reference15 articles.

1. Laosiritaworn Y., CMU J. Nat. Sci. 4, 147 (2005)

2. Magnetic Hysteresis Properties in Dilute Ising Ultra-Thin-Film: Monte Carlo Investigation

3. Stanley H.E., Introduction to phase transitions and critical phenomena (Oxford University Press, Oxford, 1987)

4. Magnetic properties of Ising thin films with cubic lattices

5. Laosiritaworn Y., Thin Solid Films 517, 5189 (2009)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3