Author:
Wang Cailing,Wang Hongwei,Zhang Yinyong,Wen Jia,Yang Fan
Abstract
Making a high dimensional (e.g., 100k-dim) feature for hyperspectral image classification seems not a good idea because it will bring difficulties on consequent training, computation, and storage. In this paper, we study the performance of a high-dimensional feature by texture feature. The texture feature based on multi-local binary pattern descriptor, can achieve significant improvements over both its tradition version and the one we proposed in our previous work. We also make the high-dimensional feature practical, we employ the PCA method for dimension reduction and support vector machine for hyperspectral image classification. The two real hyperspectral image datasets are employed. Our experimental results with real hyperspectral images indicate that the high dimensional feature can enhance the classification accuracy than some low dimensional.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献