Analysis of the Ecological Effects of Decadal Large Scale Intermittent Annual Water Allocation using Satellite Data in Baiyangdian Wetland, Northern China

Author:

Wang Fei,Zhao Ying

Abstract

In this study, the ecological effects of intermittent water allocation with emphasis on spatiotemporal responses of the corresponding vegetation were analyzed using remote sensing data and GIS-based buffer technology considering the period from 1st July 2000 to 31st December 2009. Three sampling sites (Angzh, Wangk, and Xidayang) with different water flow paths and three buffer distances were distinguished in the research. The Seasonal-Trend decomposition procedure based on Regression (STR) trend extraction and its corresponding linear regression and anomaly detection were executed to determine temporal variations of vegetation under the effects of water allocation. ANOVA and PCA methods were employed to identify the spatial responses of vegetation to different water flow paths and buffer distances. The results were as follows: (1) NDVI except NDVImin displayed higher values during the period without water allocation; (2) extremely significant decline trends (p<0.001) of all NDVI categories were observed in all sites at all buffer distance levels, except for NDVImin at buffer distances of 2 km and 4 km in Angzh, showing stronger fluctuations of frequency after 2008 as well as the decline gradient with the extent of buffer distance to river. The anomaly detection results provided similar evidence of stronger NDVI fluctuations after 2008; (3) water allocation had extremely significant effects on regional vegetation coverage (p<0.01) with a decline gradient of statistical p values along enlarged buffer distances. Our results provide evidence of spatial and temporal differences in vegetation response to water availability due to the intermittent frequency water allocation implemented via different river channels. The findings of this study will deepen our understanding of the effects of water division on regional vegetation restoration and can be used to develop a practical strategy for effective implementation of water allocation.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3