Research on emergency control mode of sluice gates in water delivery canal

Author:

Nie Yan-hua,Liao Ling-min,Huang Guo-bing

Abstract

The regulation of sluice gates(control gates, dividing gates and exit sluices) in water delivery canal is very important and complicated especially in emergency conditions. Most of existing achievements are about canal control theory or based on normal operation condition, lack of researches about emergency joint dispatch under accident conditions and its internal mechanism. In this paper, a mathematical model for emergency dispatch of a long water delivery canal was established to study gate control modes. Some typical operating conditions were selected as study cases and some indicators which could affect safety and economical efficiency of project operation like water level, return water, gate action times were selected as measuring indices. The simulation calculations about different gate control modes of control gates and exit sluices(control speed, open and close time, action frequency, etc)were carried out, through changing gate group control modes to simulate disturbances in emergency regulating process, then track the unsteady flow hydraulic response of channel, analyze the variation of hydraulic parameter, ascertain the relationship between disturbances and channel hydraulic response, summarize the induction mechanism at last. The results can enrich canal gate emergency control theory and improve operation safety and economical efficiency. They can also provide scientific guidances for operation of water diversion projects to enhance emergency disposal ability, and it has strong academic and practical value.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3