Modeling of the process of the extinguishing gas concentration changes in the protected compartment

Author:

Kubica Przemysław,Boroń Sylwia

Abstract

The article discusses the aspect of the fire safety of rooms protected by Fixed Gaseous Extinguishing System (FGE-system). On the basis of a literature study, including the analysis of design standards, it was claimed that analytical models of gas outflow from the compartment ignore some parameters that can affect the process of extinguishing gas concentration changes in time. Correct prediction of the gas flow process may affect the retention time value, which is an important determinant of the fire safety of rooms protected by FGE-system. The density of extinguishing gas was indicated as a parameter with a large potential for extending the retention time. It was noted that the density of gas depends on atmospheric conditions like temperature, pressure and humidity, which are omitted in the standard models. In the research part, the concentration distribution of nitrogen and nitrogen-argon mixtures were analyzed using three methods. Obtained experimental data were compared with analytical calculations using a standard model (model N) and a new proposed model extended by an impact of the atmospheric conditions (model PK). Model PK showed greater accuracy of determining the process of extinguishing gas concentration changes. The new proposed model might be a valuable tool for further analysis of gas flow through the room.

Publisher

EDP Sciences

Subject

General Medicine

Reference8 articles.

1. NFPA 2001: Standard On Clean Agent Fire Extinguishing Systems Edition: 2012

2. EN15004-1:2008

3. ISO14520-1:2006

4. Analysis of Hold Time Models for Total Flooding Clean Extinguishing Agents

5. Kubica P., Wnęk W., Tuzimek Z., Domżał A., The influence of temperature, pressure and air humidity on the retention time of extinguishing gases (VII International Conference Fire Safety of Buildings, Warsaw 2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3