Heat transfer coefficient determination using the FEM with time-dependent Trefftz-type basis functions in subcooled flow boiling in a minichannel

Author:

Maciejewska Beata,Piasecka Magdalena

Abstract

Results concerning flow boiling heat transfer in a vertical minichannel of 1.7 mm depth were shown. The channel was asymmetrically heated by a thin foil. Its surface temperature was recorded continuously in points by thermocouples. Measurements were carried out in 0.01 s intervals. The objective of the numerical calculations was to determine the heat transfer coefficient on the heated foil–fluid contact surface in the minichannel from the Robin boundary condition. Both the foil and fluid temperatures were the result of solving the nonstationary two-dimensional problem in the foil and flowing fluid. The problem was solved by using the FEM combined with Trefftz-type basis functions. The values of the time-dependent local heat transfer coefficient were presented and discussed.

Publisher

EDP Sciences

Subject

General Medicine

Reference16 articles.

1. Özisįk M. N., Orlande H. R. B., Inverse heat transfer: fundamentals and applications. Fundamentals and Applications (Taylor & Francis, New York, 2000)

2. Trefftz E., International Kongress für Technische Mechanik (1926)

3. Trefftz method: A general theory

4. A Trefftz type method for time-dependent problems

5. Movahedian B., Boroomand B., Soghrati S., Eng. Anal. Bound. Elem., 37 (2013)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3