Investigation on Flow and Heat Transfer of Supercritical CO2 in Helical Coiled Tubes at Various Supercritical Pressures

Author:

Thiwaan Rao N.,Oumer Ahmed. N.,Devandran G.,Noor M.M.

Abstract

Supercritical carbon dioxide (scCO2) has unique thermal properties with better flow and heat transfer behavior. However, the flow and heat transfer behavior of scCO2 using helical coil geometries have not fully documented yet. Therefore, the main purpose of this study is to investigate the flow and heat transfer characteristics of scCO2 in helical coiled tubes for heating process using computational fluid dynamics (CFD) method. For the simulation, commercial CFD software called ANSYS FLUENT is used. Helical coiled tube of inner and outer diameter 9.0 mm and 12.0 mm, respectively, with total length of 5500 mm, pitch distance of 32.0 mm and 6 turns of coils is considered. The model is intended to analyze the pressure drops, friction factor, Nusselt number, and goodness factor of scCO2. Three different inlet pressures (8.00 MPa, 9.03 MPa and 10.05 MPa) with three different uniform heat fluxes (20.5 kW/m2, 50.5 kW/m2 and 80.5 kW/m2) at constant inlet temperature of 27°C are considered. The numerical results are compared with experiment results from previous study to validate the developed model. The wall temperature results from the numerical analysis are in good agreement with the experimental data. From the numerical analysis, the Nusselt number increased significantly when the inlet mass flow rate and heat flux increased. Moreover, it was observed from the simulation results that an increment of average pressure drop by 900 Pa (19.57%) and average friction factor coefficient by 0.1536 (33.85%) when the pressure inlet increased from 9.03 MPa to 10.05 MPa. Hence, the results obtained from this study can provide information for further investigation of scCO2 for industrial applications

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3