Investigation of stationary trajectories with associated milling by spur gears

Author:

Gubanova Alexandra A.

Abstract

When milling in a steady state, unlike, for example, turning, there are periodic elastic deformation displacements of the tool relative to the workpiece along the machining path. Instead of an equilibrium point, we consider a certain closed trajectory of elastic deformations. This is the trajectory to which all the trajectories approach asymptotically, while forces and deformations that mutually affect each other through the mechanism of changing the area of the cut-off layer are redistributed. The article proposes a mathematical apparatus and algorithms for calculating the trajectory of establishing a stationary state. The case of milling with spur mills is considered. A mathematical description of the “basic” dynamic model of the associated milling by the side teeth of the end mills for the complete non-stationary nonlinear connection formed by the milling process is presented. It differs from known models by considering spatial oscillations, taking into account the dependence of forces on the cutting speeds, taking into account the rates of elastic deformation displacements, taking into account the retardation of forces with respect to deformation displacements, and also by nonlinear damping caused by forces acting on the trailing edge of the tool. In addition, periodic changes in the parameters and the formation of the surface at the previous contact of the tooth are taken into account.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model of Hole Mandrel Process in Tubular Workpieces;Lecture Notes in Networks and Systems;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3