Use of damping identification technique for damage detection

Author:

Arora Vikas

Abstract

Stiffness-based structural health monitoring methods are widely used for detecting the damage in a structure. These stiffness-based structural health monitoring methods uses change in natural frequencies and modeshapes for damage detection. These methods are based on identifying the change in stiffness of the healthy and damage structure to predict the damage in the structure. These stiffness-based methods are not efficient for detecting a small damage in a structure as there is a negligible change in natural frequencies and modeshapes due to a small damage in a structure, however the damping characteristics of the structure are highly sensitive to the damage in a structure. In this paper, new damping-based damage detection procedure has been proposed. In the proposed procedure, the changes in damping matrix of the structure has been used to detect the damage in the structure. The proposed procedure is able (or can) to detect both the location of the damage and the extend of the damage in the structure. The proposed procedure of damping-based damage detection is a 2-step procedure. In the first step, damping matrices of both the healthy and damage structure are identified and in the second step, the identified damping matrices are used for damage detection. Numerical and experimental case studies are presented to demonstrate the effectiveness of the proposed procedure. The results have shown that the proposed damping-based damage detection procedure can be used for detecting damage in a structure with confidence.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3