Comparison of numerical modeling results from laboratory and field obtained unsaturated flow parameters

Author:

Ahmed Asif,Alam Md Jobair Bin,Islam Md Azijul,Hossain MD Sahadat

Abstract

Moisture and suction variation beneath pavement contribute significantly to the volumetric deformation of expansive subgrade in response to climatic loading. In order to quantify the damage due to climatic loading, estimation of moisture, and suction variation in pavement subgrade is of paramount importance. The objective of the current study is to investigate the moisture and suction variation in response to precipitation events with the aid of numerical modeling in the unsaturated pavement subgrade. In unsaturated soils where the voids are filled with both water and air, the SWCC describes the volume of the voids that remain filled with water as the soil drains pore water. The SWCC has been identified as the vital soil information required to analyze seepage, stability, and volume change problems involved in unsaturated soils. However, the selection of unsaturated flow parameters is typically laboratory-based which represents specific conditions rather than a dynamic scenario of the field. In this study, an attempt was undertaken to conduct numerical modeling using field generated unsaturated flow parameters along with five other predictive models. Results indicated the distinct variation of moisture and suction distribution in subgrade from the same rainfall event while using laboratory versus field generated SWCC unsaturated flow parameters. In addition, predicted model yielded output was also varying with the field generated parameters’ output. Instead of using laboratory-generated static parameters, it was found that field generated dynamic unsaturated flow parameters were able to capture better suction variation at the pavement subgrade.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3