Performance Evaluation of Phase Separation Process Using High-concentration AMP Promoted by MAPA for CO2 Capture

Author:

Matsui Akihisa,Ogiyama Naoya,Endo Takumi,Arakawa Jun,Nakagaki Takao

Abstract

Reduction of the energy penalty and cost of CO2 capture from concentrated gas streams using amine-based solutions can be achieved by minimizing the energy penalty in the solvent regeneration process. High concentration 2-Amino-2-methyl-1-propanol (AMP) solution precipitates as a carbonate when enough CO2 has been absorbed. By sending the separated carbonate to the stripper, the sensible heat of regeneration can be reduced. However, previous testing using 50 weight percent AMP solution mixed with Piperazine (PZ) with solid-liquid separation showed that the CO2 recovery rate was limited to 65% due to the lack of PZ regeneration. To improve the CO2 recovery rate, a novel solution and injection process were developed. N-Methyl-1,3-diaminopropane (MAPA) was selected as an alternative promoter based on reaction rate testing. Various tests were employed to characterize the behaviour of the AMP/MAPA solution under CO2 capture and recovery conditions. The injection point was relocated to avoid the inhibition of CO2 absorption observed when CO2 semi-lean liquid was sent to the upper portion of the absorber. The CO2 recovery rate and the precipitation quantity were simulated using a model built in Aspen Plus®. The novel solution and injection set-up were evaluated experimentally by a bench-scale apparatus.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3