Research on load balancing technology for microservice architecture

Author:

Wang Hao,Wang Yong,Liang Guanying,Gao Yunfan,Gao Weijian,Zhang Wenping

Abstract

With the emergence and development of new software architectures such as microservices, how to effectively handle the service load and ensure the service capability of the system has become an urgent problem to be solved. Load balancing technology needs to achieve high availability of microservices without affecting the delayed response of requests. According to different principles of adoption, mainstream load balancing technologies have emerged, such as polling methods, hash algorithms, and artificial intelligence technologies. This article categorizes and summarizes load balancing technologies for microservice architecture, and elaborates the methods and characteristics of current mainstream load balancing technologies. Based on the comparative analysis of existing technologies, this paper summarizes and points out the future development direction of load balancing technology.

Publisher

EDP Sciences

Subject

General Medicine

Reference11 articles.

1. Fowler M., Lewis J., Viittattu, 28 (2014)

2. Newman S., Building, O'Reilly Media, (2015)

3. Shi L., Zhu Z., Zhou J., Li X., Li J., Comput. Eng (2020)

4. Jiang W., Pan S., J.COMPUT.SCI.TECH-CH, 30,02 (2020)

5. K David. Matthias R, THEOR. COMPUT. SYST, 39,6 (2006)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Literature Review on the Strategic Shift to Cloud ERP: Leveraging Microservice Architecture and MSPs for Resilience and Agility;Electronics;2024-07-22

2. Placement of Microservices-based IoT Applications in Fog Computing: A Taxonomy and Future Directions;ACM Computing Surveys;2023-07-17

3. Combining API Patterns in Microservice Architectures: Performance and Reliability Analysis;2023 IEEE International Conference on Web Services (ICWS);2023-07

4. Light Weight Native Edge Load Balancers for Edge Load Balancing;Green Intelligent Systems and Applications;2023-06-13

5. Weight based Load Balancing in Kubernetes using AWS;2023 International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2023-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3