Study on the application of LSTM-LightGBM Model in stock rise and fall prediction

Author:

Guo Yuankai,Li Yangyang,Xu Yuan

Abstract

This paper proposes a hybrid financial time series forecast model based on LSTM and LightGBM, namely LSTM_LightGBM model. Use the LightGBM model to train the processed stock historical data set, and save the training results. Then the opening price, closing price, highest price, lowest price, trading volume and adjusted closing price are separately input into the LSTM model for prediction. The prediction result of each attribute is used as the test set of the prediction after LightGBM training. Constantly adjust the parameters of each model, and finally get the optimal stock price forecast model. The model is validated with the rise and fall of AAPL stock. Through the comparison of evaluation index root mean square error RMSE, mean absolute error MAE, prediction accuracy Accuracy and f1_score. It is found that the LSTM_LightGBM model exhibits stable and better prediction performance in the stock prediction. That is to say, the LSTM_LightGBM model proposed in this paper is stable and feasible in the stock price fluctuation forecast.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3