Author:
Bikakis George,Tsigkros Nikolaos,Sideridis Emilios,Savaidis Alexander
Abstract
This article deals with the evaluation of the ballistic resistance of GLARE 4A fiber-metal laminates subjected to high velocity impact by a cylindrical projectile. Important impact variables such as the ballistic limit, the impact load and the absorbed energy time histories are predicted using the ANSYS LS-DYNA software. The simultaneous existence of various impact damage mechanisms, which is unique in fiber-metal laminates, is demonstrated using the numerical results. Each of the mechanisms absorbs a part of the initial impact energy and contributes to the high ballistic impact resistance the materials. With reference to the considered GLARE 4A panels, the behavior of the transient impact load is analyzed and useful conclusions are drawn. It is found that the maximum impact load is applied at the beginning of ballistic impacts, during the initial local indentation of the panels under the projectile. It is substantially higher than the following peak values of the impact force time history. It is revealed that during the beginning of ballistic impacts, the impulse of the collision increases as the thickness of the panels is increased. The work done by the impact load during the local indentation stage is also an increasing function of the panels’ thickness.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献